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ABSTRACT

R.C matrix is a square matrix in which i row, for all integer value of i, is orthogonal to i column. Though the set of
all R.C matrices is a sub-class of square matrices but refrains to obey some of the basic tenets of matrix algebra. Member
matrices of the set of R.C matrices, except the null matrix, are always non-singular and they disguise many invincible

characteristics seemingly uncommon in nature.
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INTRODUCTION

Abbreviations

(1) R.C Matrix (Row. Column matrixf2) JJn (The Set of all R.C matrices where ‘n’ stands fgrositive integer
greater than) (3) (Null Matrix)

ASSUMPTIONS
Any member matrix of the s@t13 will follow all fundamental tenets of matrix algebr
INTRODUCTION

We introduce R.C matrix and try to unveil sometsfaxcellent salient features. These are the featwhich have

become known to us on looking at its basic strecfrom different angles.
Defining Property and General Form

What -we call, an R.C matrix is an outcome of aerogliscussion on the various properties of matridast a
thought; what can happen if each one of the n mivesmatrix is orthogonal to the corresponding oatuof the same matrix.

In general ' row, for all integer value of i, is orthogonalada " column and hence truly justified to name as ‘Rréatrix.
We give an illustration;

1 2 -3
A= (1 2 —6) is an R.C matrix.
1 1 3

We write its general form. An R.C matrix A of ordetn from the sedJn is as follows.
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/a1 Q2 Q43 - aln\
az1 Ay @23 - Gy
A=|as as a3 . az, |€)n
App Ay 3 - Ay
We have the R.C propertgg;)? + Zj:z’; a;ja; =0fori#ji=1ton 1)
[e.9. (8)° + @z 1 + @13 Ber+ 14 Burt oeoonn =0]

We have R.C matrices of higher order and even @andnstructed by extending R.C property from a miReC

matrix of order 3x3.

R.C matrices of order 2x2 are ((1711 :}) ) (_11 1) ©) (} _11),and 4) (—11 —11) o

These are parallel in constitutional nature to whedtnown as spin matrices in quantum physics. Whilisgive our

readers the best insight giving the debut in tre frald.
PairWise Graphical Presentation

At this stage, we would prefer to draw facts fromapghical presentation of any R.C matrix and exteod
imaginations to possibly search for such matridelsigher order then what we tackle with on hand. e the first matrix
shown above.

-1 -1
1 -1

-1

LetA:( )

) ; it is a R.C matrix. In two dimensional rectargyuframe, the vectoré:i) and ( ) are

orthogonal to each other. In the same way the v:eét_&l) and(:i) are orthogonal to each other.

We have developed an elegant method of extending.@nmatrix of order nxn to the next higher ordeatmx of
order (n+1)x(n+1). We shall discuss the same inseetion to follow. We, just for citation purposeite R.C matrices of
order 3x3 and 4x4.

12 -1/2 1 1 -12 -1
A:<1 1 1)and3=§ 3 .3 33

3/2 -3 3 -3
1/4 -1/2 1/2 P

[Extension of a R.C matrix from 2x2 to any R.C matrk of subsequent higher order has been shown in the

annexure. Readers are requested to please go thrduthe technical proceedings.]
General Format of 3x3 R.C Matrix

We will be treating with a general format of 3x3CRmatrix and derive many theorems and properties. Wil

consider

matrix as a standard matrix and treat this as arfRatix with allreal entries.

[If all real entries are zero, then it is a nulltmaand hence defining property of an R.C matmxmits a Null Matrix
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in the category of a R.C matrix.

0 0 0
i.e0= (0 0 0) -- A null matrix is, by definition, a R.C matrix )
0 0 0

We have, by definition of R.C matrix, the followiegnditions.

&+bx+cp=0 (4)
bx+y+qz=0 ©)
cp+qz+t=0 (6)
We shall write A = bx, B = cp, and C = gz (7)

ie.€d+A+B=0,¥y+A+C=0,andT+B +C=0

From the three equations written above, we derive

E+y —-r=2A= A= —?1(32 + y? - r?). In the same way we can write two more equatidiighree are listed

below.
A= bng(—a2 - y2+ r?)
B=cp=%(—a2+ y2—r? (8)
C=gz= (%~ y* — r?)
Using the above relations those we have derivedyii@rove some important notions in terms of theros.

Theorem -1 A R.C Matrix with Real Entries, except aNull Matrix, cannot be a Symmetric Matrix

a b c
Let the R.C matrix be A {x y z) as defined by (2)

p q r
If it is a symmetric matrix then each obe, cp, andgz must be positive but can never be negative.
Using property given in (8), as bx > 0, we havet+ y?> - r?2 <0
In the same way as pc > 0, we ha¥e- y2 + r? < 0 and
gz >0gives-a’+ y> + r2 <0
Adding all the results obtained above we ha¥e y? + r? < 0 which is possible for any real valuesafy, and r’

This implies that each one of bx, cp, and qz 2/@hich can make each one o4, y, and r * = Oand hence in turn
a’+ y*+ r*=0]

This proves that except a null matrix an R.C matérnot be symmetric one. This proves the theorem.
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Lemma
On the same lines except for a non-null R.C ma@inot be a skew-symmetric matrix.
Proof

we must have at least one of bx, pc, and gz <WBilevwo of them arec 0. This in turn, implies that, on the addition
of 2bx, 2pc, and 2qa% + y% + r? < 0; which is not true. If it is a non-symmetric cien by its basic property each one of
diagonal elements, y, and r = 0.This, in turn, implies tha4? + y? + r? < 0; which is not possible for real entries matrix
This proves the lemma. In the next section, we pritlve some defining features of 3x3 R.C matriaes then will establish

that those can be extended for the R.C matricégbkr order also.

Theorem -2: A R.C Matrix, except a Null Matrix, is always a Non-Singular Matrix

Proof
« By definition, we accept that a null matrix is arCRmatrix and hence in that case, R.C matrix ingudar one.
e The case when an R.C matrix is a non-null onehbydefining property of R.C matrix we claim its psingularity.

+  [By definition of R.C matrix its'f row vector is orthogonal td"icolumn vector only making the result of their dot
product/ inner product equal to zero. Had it beghagonal to any other column except theohe then the column

vectors become linearly dependent which resulteérsingularity of the matrix.]
* We conclude that an R.C matrix, except a null matsi always a non-singular matrix.
Theorem 3
* Inthe3x3R.C matrix with real entries product of at leasbtaff diagonal (principal) entries are negative.

» [This is an important clue to constructing a 3x& Raatrix. The same concept can be extended to .earfatrices of

the higher order.]

Proof
a b c
Let us consider the R.C matrix A(zx y z) as it is defined by (2)
p qr

As mentioned in the statement we want to provedh&tastwo of the termdx, cp,andgz must be negative; this is
rather one of the most important salient featufd2.€ matrix. The theorem targets on establishiveg at least two dbx, cp,

andgz are <0
Being an R.C matrix the entries follow R.C prope¥tje write relations (4), (5), and (6) as below.
a+bx+cp=0
bx +y¥+qz=0
cp+qz+f=0
We introduce some notations as A = bx, B = cp,@nmdqz

With this we enjoin the notations with the aboviatien to get
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a@+A+B=0,y+A+C=0,and7+ B+ C =0

From the three equations written above, we derive

a+y —rP=-2A= A= bx :%(—a2 — y% + r?). In the same way, we can write two more equatidfighree are
listed below.

A= bx=%(—a2 —y2+r?)

B=cp =% (—a%?+ y? — r? 9)

C=qz=(a® - y* - r?)

From this junction we discuss different cases for B, B = cp, and C = gz.
Case 1:All of A, B, andC Cannot be positive

Say A = bx > 0. This implies thata? — y? + r? > 0; in the same way B = cp > 0 implies that

—a% + y? — r? > 0. Adding the two results, we hax&s” > 0 which is not possible.

[In the same way we can derive th2g” > 0 and -2F > 0.]

This helps us conclude that A = bx, B = cp, and §z=all > 0 is not possible for a R.C matrix.

Case 2: Any Two of A, B, and C > 0 and the Remainin< 0 is not Possible

The proof is an immediate consequence of the alboitten case 1.

Case 3: Any one of A, B, and C = 0 is not Possible

The proof is supported by case 1.mentioned above.

Case 4: Any one of A, B, and C < 0 is not Possible.

The case 2 mentioned above supports the stateme tesmce the proof.

Case 5: Any Two of A, B, and C are < 0 and the Rermang One is > 0.

say A = bx < 0. This implies thata? — y? + r? <0 and B = cp < 0. This implies that? + y? — r? <0

Adding them we ge®2 & < Owhich is true. § A is a real entry matrix.]

In addition to this, for C = gz > 0 implie€ — y2 — r? > 0. We have to show validity of the result. Frdme first

result we have? —r? > —y? ~a? —r?— y? > —2y?
-2y < 0= a? —r? — y? > 0. This proves that along with bx and cp <0, C =dis necessary.
Case 6: All the three A, B, and C are Negative.
say A = bx < 0. This implies thata? — y? + r2 <0

B = cp < 0. This implies thata? + y? — r> <0
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and C =gz <0 implies that — y2 — r2 <0
As found in the above case, adding first two retative derived2 & < 0 i.e & > 0,we can derive
-2r*<0and -2 ¥ < 0.We get each one of,a? and f > 0; which is true. It proves the statement.
Eigen Values

It is the most important and useful notion in matigebra. For the given square mathixthere exist a non-zero

vectorX such that for some valiewe have the matrix equation

AX = ) X satisfied.A is called eigenvalue arXlis called the eigenvectdn this section, we discuss salient features

of eigenvalues and eigenvectors for the R.C matrix.
Introduction to Important Preliminaries
Before we proceed to enunciate our findings woiklel o mention certain peripherals regarding the

R.C matrix and Eigenvalue. This will simplify ourgeeedings. All these will prove useful in the argants proving the next

theorems.
a b c
Let us initially focus our attention on A(zx y z) a R.C matrix with all real entries defined by (2).
p q T

Let A4, Ao. and A3 be the eigen values &f with corresponding non zero eigen vectgisX,, and Xa.

(1) As the matrix A is an R.C matrix, by defining proges, we have the following results. These resaflesalready

mentioned in earlier work but just to abridge wie ¢those at this point.
a+bx+cp=0bx+3+qz=0,andcp+qz ¥£ 0
We introduce some notations as A = bx, B = cp,@rdqz and derive
A= bng(—a2 —yi+r?)
B :szé(—a2+ y2—r?) e a?+y*+r?=-2(bx+ cp +qz)
C=gz= @@~ y*~ r?)

(2) Also recalling the facts pertaining to eigen valugs.,, andi3; we write

(a) Sum of Eigen values &, + X, + A3 = Trace of the matrix =a +y +r (10)
(b)Sum of product of eigen values taken two at atifeh, + Az A3 + Ly Az= (ay-bx)+(ar-pc)+(yr-qz) (11)
(c) Product of Eigen valuesi Mhz = det. A = |A| (12)

With this on hand we state some theorems.
Theorem 4: Eigen values of an R.C Matrix with ReaEntries are either all Zero or exactly One Real.

Proof: As a null matrix is also an R.C matrix, we haveeddlenvalues are zero and hence the proof
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If the matrixA is not a null matrix then we proceed as follows.

Using the facts mentioned we hag € A, + hg)? = A% + A2 + hg” + 20 hp + Az hg + A2 Ag)

o (@t y+rf =iy’ +35° +Ag° +2(ay-bx)+(ar-pe)+(yr-q2)
but &+y*+r* =-2 (bx+ cp +qz) [as mentioned earlier]

So we have (a + y +7F -2 (bx+ cp +qz) + 2(ay +yr + ar)
On comparing two results for (a + y #nje have

M2+ 07+ A7 +2(ay-bx)+(ar-pc)+(yr-qz) = -2 (bx+ cp +qz) + 2(ayr + ar)

=M%+ 22 + 252 = 0and hence the proof. (13)
Theorem 5: All the Eigen Values of A R.C Matrix are Non-Zero. (14)
Proof: If any one of the eigen value is zero then it implihat |A] = 0.

This means that the R.C matrix is a singular mafrhis violates the defining property of the R.Ctrixa It, except

the null matrix, is always non-singular.

[Note: We have the derived fact that the eigenesiy, A,, and A5 are such thak,? + A,° + 45> = 0 then one igeal

and different from zerawhile other two are complex conjugate of each othg

Important Derivation
In tune with the above results, we have up till now tmportant results-{13) and(14)
From (13) we write thak,? + 1,2 + 5> = Owith no being zero.
= A% + 42 = - L%, We conclude that,, and); are complex conjugates of each other.
Letd, = o + if andis = < —if. So we geh,? + As°= 2(a? — B2) =-1°
w M’ = 2@~ B7) (1)

This logically implies thatf] > | a|

These eigenvalues will satisfy” + A2 + A2 = 0

Deductions: The results established above will help deducdath@wing relations.

a b c
For the R.C matrix A :<x y z)
p qr
N
1Trace=2; +2, +2z3=a+y+r=T say (a)
202+ dg + h2 kg = (ay-bx) + (ar-cp) + (yr-qz) = Msay . (b) 12)
3;\.1)\.2}\.3:|A|=det.A=D (C)
407 +207+20°=0 @
J
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Using all these we derive

523 —T A%+ M ) —D = 0 Characteristic equation \
6l +h3=2a=T-M andki, -3 =2 i and in connection with (a) above
7Mm=T-2aiea= (-T2 andi(2a) + A ks = M (13) ’

8 Using Q\.z')\.g)ZZZ\/(aZ—%) we havekzza+\/(az—}l£) andxgza-\/(az—lg)
1 1

J
This conveys that knowing only the real eigenvailues sufficient enough to write the remaining twomplex

conjugate eigenvalues.

9 Fact: in a given R.C matrix there exists at least onemmol G or a row say Rsuch that for a non —zero real value

‘c’ such that either £= c. Gy or R = C. Ry; i.e. the column or the row is a multiple of soreal constant.

1 2 -3 -1
For A = (1 2 —6) the third column g= 3(—2)
1 1 3 1

(3) Graphical Method of Approximating Real Eigen Vdue

By now, it is well known that a non-null R.C matitas only one non-zero real root while the remaind®e are

complex conjugate. [At this stage we reiterate fhatal entry R.C matrix cannot be either symmaetrickew symmetric.]

The vision to shape this section is to locate diaglly and approximate algebraically the real raftthe

characteristic equation of the given R.C matrixweshave discussed many possible properties

inter-linking the different eigenvalues of a givRrnC matrix, we state here what we shall requiréna¢s. We need

the first one (5) above in set (12); It is our @weristic equation.
A-TA*+MA1-D=0

For real eigen roak, the graph of &) on a set of perpendicular real axis, will intergbet x-axis in a point, say x

)y; its location is our objective.

Fori =0, f(A) =-D whereD = det.|A|=A; A, A3 Where, as said earligk;, and A; are complex eigen values.
Plotting this, we get the graph of a cubic curve.
We parallel our work citing a real R.C matrix.

1 2 -3
LetA= (1 2 —6) With T = Trace = 6, M= 18, and D = -3
1 1 3

f(A) =23 —62% + 18 +3, for & = 0, f(.)= 3. This situation is graphed as below in figure-1.Tigere -2 shows its

magnification on an interval about its intersectionx axis.
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Figure 1

[~0.3015,~4) 0.0)

0% 43 225 02 4 ]
A =-0.3015 Xo=0

~h

.

Figure 2: (Magnified Interval)

Let f(0) = h [In our case f(0)= 3]. As it has rodgtcrosses x-axis. This implies that there existgx, < 0] such that
f(x2) = -h. [ In our case fgy = —h = -3] We can always find suchalgebraically.

As f(x, = - 0.3015) = -3 and f(0)= 3, root 3 kes in (- 0.3015,0),
f(x,) = -h< f(0)= h; %€ (x5, 0). Let %= (%, + 0)/2.= % /2, Now we find f(%)

The next approximation is (-0.3015 / 2 = - 0.15076D.15075) = hsay.

Figure 3: (Iterative Version)

In this way after a finite number of iteration, @givene > 0, we can find a real,>so that |f(¥2|<e.This is the most
effective method for approximating graphically fimer approximation to the real eigenvalue.
Vision

During the time that we derived and critically mwed the characteristics of R.C matrices of dinmrsi2x2 and
onwards, we could find many interesting featuree. 8mmit, we have searched a small area andveglenjoin our efforts

inspired by a new result we work upon. Excavatinghs unknown area may elaborate mathematically égnimninds.
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All constructive suggestions are welcome.
Annexure

As discussed, we, in this section, will elabor&ie technique of finding an extension of a 2x2 R.&rm to the R.C

matrices of the higher order. We begin with a seriRpIC matrix of order 2x2.

Let A, = (i _11)

Let us consider the column system @s §x + 1 and y= -1x + 1 [which shows perpendicular lines ihdRace.]
Integrating each one with respect to x, we get
y11=X/2 + x+ G and g, = - /2 + X +C,.

The matrix which corresponds to this system is

1/2 -1/2 1/2 -1/2 p
A, = ( 1 1 ) We extend this matrix Aas A = ( 1 1 q) where all the letters in different positions
€1 C2 €1 C2 C3

are the real values. It is so planned that thagfgaR.C. property.
We have, (1/D)+ (-1/2)(1) + @, =0, (-1/2)(1) + 1 +¢, = 0, and p; + qc, + (¢)°=0
This gives us a free choice for selection of vdeaalsemaining within the given equation.
We select p =1, 1/4,q =1, £=-1/2 and hence;& Y.
1/2 -1/2 1
The extended version of R.C matrix is novy,$< 1 1 1 )
1/4 -1/2 1/2
Again on the same lines, this can be extended ®.@matrix of the size 4x4.
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